RFM模型是衡量客户价值和客户创利能力的重要工具和手段。在众多的客户关系管理(CRM)的分析模式中,RFM模型是被广泛提到的。该机械模型通过一个客户的近期购买行为、购买的总体频率以及花了多少钱3项指标来描述该客户的价值状况。
通过定性风险分析排出优先顺序的风险进行量化分析
量化模型建模的流程一般包括以下几个步骤:
1. 数据收集:收集与所研究的问题相关的数据,包括历史数据、实时数据、文献数据等。
2. 数据清洗:对收集到的数据进行清洗和预处理,包括数据去重、缺失值处理、异常值处理、数据变换等。
3. 特征工程:对数据进行特征提取和特征选择,以便更好地描述数据的特征和规律。
4. 模型选择:根据问题的特点和数据的特征,选择适合的模型进行建模,包括线性回归模型、决策树模型、随机森林模型等。
5. 模型训练:使用已经清洗和预处理好的数据,对所选的模型进行训练,得到模型参数。
6. 模型评估:对训练好的模型进行评估,包括模型的准确率、精度、召回率、F1值等指标,以及模型的稳定性和泛化能力等。
7. 模型优化:根据模型评估结果,对模型进行调整和优化,包括调整模型参数、改变模型结构、增加特征等。
8. 模型部署:将训练好的模型应用到实际问题中,并进行部署和维护,包括模型的部署环境、模型的性能监控和维护等。
需要注意的是,量化模型建模流程是一个迭代的过程,需要不断地对模型进行评估和优化,以提高模型的准确率和稳定性。同时,在建模过程中需要注意数据的质量和可靠性,以及模型的可解释性和可解释性等问题。
大模型量化和不量化是指在训练和部署大型神经网络模型时,采用不同的技术和方法进行优化和压缩的过程。
1. 大模型量化(Quantization):在大模型量化中,使用低位数(通常是8位或更低)来表示模型的权重和激活值,从而将模型中的浮点数参数转换为定点数或整数表示。通过降低参数的位数,可以大幅减少模型所需的存储空间和计算量,从而提高模型的效率和速度。然而,由于量化过程会引入一定的信息损失,因此需要在保持模型性能的同时进行适当的量化和训练调整。
2. 不量化(Unquantized):不量化即指使用浮点数表示模型的权重和激活值,保持模型的原始精度和细节。不量化的模型能够提供更高的精度和准确性,但代价是需要更大的存储空间和更高的计算开销。
区别如下:
- 存储空间:大模型量化可以显著减少模型所需的存储空间,而不量化需要更多的存储空间。
- 计算开销:大模型量化可以减少模型的计算开销,提高推理速度,而不量化可能会需要更多的计算资源和时间。
- 精度:大模型量化会引入一定的信息损失,导致模型的精度稍微降低,而不量化能够保持较高的精度和准确性。
在实际应用中,选择大模型量化还是不量化取决于具体场景的需求和权衡。如果资源和计算性能有限,可以选择量化来降低存储和计算开销。如果需要更高的精度和准确性,并且有足够的计算资源可用,可以选择不量化来保持原始模型的精度。
量化策略主要有10种。
01、海龟交易策略
海龟交易策略是一套非常完整的趋势跟随型的自动化交易策略。这个复杂的策略在入场条件、仓位控制、资金管理、止损止盈等各个环节,都进行了详细的设计,这基本上可以作为复杂交易策略设计和开发的模板。
02、阿尔法策略
阿尔法的概念来自于二十世纪中叶,经过学者的统计,当时约75%的股票型基金经理构建的投资组合无法跑赢根据市值大小构建的简单组合或是指数,属于传统的基本面分析策略。
在期指市场上做空,在股票市场上构建拟合300指数的成份股,赚取其中的价差,这种被动型的套利就是贝塔套利。
03、多因子选股
多因子模型是量化选股中最重要的一类模型,基本思想是找到某些和收益率最相关的指标,并根据该指标,构建一个股票组合,期望该组合在未来的一段时间跑赢或跑输指数。如果跑赢,则可以做多该组合,同时做空期指,赚取正向阿尔法收益;如果是跑输,则可以组多期指,融券做空该组合,赚取反向阿尔法收益。多因子模型的关键是找到因子与收益率之间的关联性。
04、双均线策略
双均线策略,通过建立m天移动平均线,n天移动平均线,则两条均线必有交点。若m>n,n天平均线“上穿越”m天均线则为买入点,反之为卖出点。该策略基于不同天数均线的交叉点,抓住股票的强势和弱势时刻,进行交易。
双均线策略中,如果两根均线的周期接近,比如5日线,10日线,这种非常容易缠绕,不停的产生买点卖点,会有大量的无效交易,交易费用很高。如果两根均线的周期差距较大,比如5日线,60日线,这种交易周期很长,趋势性已经不明显了,趋势转变以后很长时间才会出现买卖点。也就是说可能会造成很大的亏损。所以两个参数选择的很重要,趋势性越强的品种,均线策略越有效。
05、行业轮动
行业轮动是利用市场趋势获利的一种主动交易策略其本质是利用不同投资品种强势时间的错位对行业品种进行切换以达到投资收益最大化的目的。
06、跨品种套利
跨品种套利指的是利用两种不同的、但相关联的指数期货产品之间的价差进行交易。这两种指数之间具有相互替代性或受同一供求因素制约。跨品种套利的交易形式是同时买进和卖出相同交割月份但不同种类的股指期货合约。主要有相关商品间套利和原料与成品之间套利。
跨品种套利的主要作用一是帮助扭曲的市场价格回复到正常水平;二是增强市场的流动性。
07、指数增强
增强型指数投资由于不同基金管理人描述其指数增强型产品的投资目的不尽相同,增强型指数投资并无统一模式,唯一共同点在于他们都希望能够提供高于标的指数回报水平的投资业绩。为使指数化投资名副其实,基金经理试图尽可能保持标的指数的各种特征。
08、网格交易
网格交易是利用市场震荡行情获利的一种主动交易策略,其本质是利用投资标的在一段震荡行情中价格在网格区间内的反复运动以进行加仓减仓的操作以达到投资收益最大化的目的。通俗点讲就是根据建立不同数量.不同大小的网格,在突破网格的时候建仓,回归网格的时候减仓,力求能够捕捉到价格的震荡变化趋势,达到盈利的目的。
09、跨期套利
跨期套利是套利交易中最普遍的一种,是股指期货的跨期套利(Calendar Spread Arbitrage)即为在同一交易所进行同一指数、但不同交割月份的套利活动。
10、高频交易策略
高频交易是指从那些人们无法利用的极为短暂的市场变化中寻求获利的计算机化交易,比如,某种证券买入价和卖出价差价的微小变化,或者某只股票在不同交易所之间的微小价差。这种交易的速度如此之快,以至于有些交易机构将自己的“服务器群组”安置到了离交易所的计算机很近的地方,以缩短交易指令通过光缆以光速旅行的距离。
1、依据个股的历史记录,进行多因子选择股票:例如,把市盈率、市净率、市销率等作为选择股票规范,挑选出一些价值被小看,或是处在合理位置的个股;
2、顺势交易:即在增长的趋势中买进,在下跌的趋势中卖掉;
3、进行合理的仓位管理:即采用漏斗型仓位管理法、矩形仓位管理法、金字塔形仓位管理法等,好解决个股后期的风险;
4、再依据个股的历史行情,找寻个股的支撑线和阻力位,把其作为止损、止盈点,即在压力部位,且得到收益的情况下立即卖掉。在跌穿支撑线时,且股票亏本的情况下立即卖掉股票,防止较大的损失。
量化交易:是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。总结起来量化交易具有:客观理性、成功率高、规避情绪波动的影响
把模型把模型铺上,订单上就生化了。
是用UG设计的产品重量轻又能安全使用,叫轻量化吧。就是为了在网络间或者PDM平台间实现全球协同同步设计,把prt简化了,便于显示和查看。所以称轻量化。生成JT文件,选择Export,直接导出成.JT格式就可以了。
Revit的族都是参数化的,即使您没有给他定义参数,做好的模型就不可能再进行缩放,只能通过参数调整改变尺寸 下图是Revit帮助中缩放功能的解释,仅适用于线 墙